Sine Rule (Proof)





Proof:
From the Trigonometric Formula for Areas of Triangles,
\[\frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C\]
\[bc\sin A = ac\sin B = ab\sin C\]
\[\frac{{bc\sin A}}{{abc}} = \frac{{ac\sin B}}{{abc}} = \frac{{ab\sin C}}{{abc}}\]
\[\frac{{\sin A}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c}\]
Thus,
\[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\]
where \(\angle A\) is the angle opposite the side \(a\), \(\angle B\) is the angle opposite the side \(b\) and \(\angle C\) is the angle opposite the side \(c\).

No comments:

Post a Comment